On simple bases of $k$-valued logic
Matematičeskie zametki, Tome 5 (1969) no. 4, pp. 471-482.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper derives an asymptotic iterated (two-fold) logarithm of the number of simple bases in $P_k$, as well as the maximal order of the functions prime for each precomplete class in $P_3$.
@article{MZM_1969_5_4_a10,
     author = {V. B. Alekseev},
     title = {On simple bases of $k$-valued logic},
     journal = {Matemati\v{c}eskie zametki},
     pages = {471--482},
     publisher = {mathdoc},
     volume = {5},
     number = {4},
     year = {1969},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1969_5_4_a10/}
}
TY  - JOUR
AU  - V. B. Alekseev
TI  - On simple bases of $k$-valued logic
JO  - Matematičeskie zametki
PY  - 1969
SP  - 471
EP  - 482
VL  - 5
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1969_5_4_a10/
LA  - ru
ID  - MZM_1969_5_4_a10
ER  - 
%0 Journal Article
%A V. B. Alekseev
%T On simple bases of $k$-valued logic
%J Matematičeskie zametki
%D 1969
%P 471-482
%V 5
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1969_5_4_a10/
%G ru
%F MZM_1969_5_4_a10
V. B. Alekseev. On simple bases of $k$-valued logic. Matematičeskie zametki, Tome 5 (1969) no. 4, pp. 471-482. http://geodesic.mathdoc.fr/item/MZM_1969_5_4_a10/