The minimization property for spaces that are normed over semifields
Matematičeskie zametki, Tome 5 (1969) no. 3, pp. 297-304
Cet article a éte moissonné depuis la source Math-Net.Ru
We show that if each nonempty subset of a space $X$, normed over a pair of topological semifields, has the minimization property, then $X$ is a real normed space (up to an isomorphism).
@article{MZM_1969_5_3_a2,
author = {A. I. Vasil'ev},
title = {The minimization property for spaces that are normed over semifields},
journal = {Matemati\v{c}eskie zametki},
pages = {297--304},
year = {1969},
volume = {5},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1969_5_3_a2/}
}
A. I. Vasil'ev. The minimization property for spaces that are normed over semifields. Matematičeskie zametki, Tome 5 (1969) no. 3, pp. 297-304. http://geodesic.mathdoc.fr/item/MZM_1969_5_3_a2/