The minimization property for spaces that are normed over semifields
Matematičeskie zametki, Tome 5 (1969) no. 3, pp. 297-304.

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that if each nonempty subset of a space $X$, normed over a pair of topological semifields, has the minimization property, then $X$ is a real normed space (up to an isomorphism).
@article{MZM_1969_5_3_a2,
     author = {A. I. Vasil'ev},
     title = {The minimization property for spaces that are normed over semifields},
     journal = {Matemati\v{c}eskie zametki},
     pages = {297--304},
     publisher = {mathdoc},
     volume = {5},
     number = {3},
     year = {1969},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1969_5_3_a2/}
}
TY  - JOUR
AU  - A. I. Vasil'ev
TI  - The minimization property for spaces that are normed over semifields
JO  - Matematičeskie zametki
PY  - 1969
SP  - 297
EP  - 304
VL  - 5
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1969_5_3_a2/
LA  - ru
ID  - MZM_1969_5_3_a2
ER  - 
%0 Journal Article
%A A. I. Vasil'ev
%T The minimization property for spaces that are normed over semifields
%J Matematičeskie zametki
%D 1969
%P 297-304
%V 5
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1969_5_3_a2/
%G ru
%F MZM_1969_5_3_a2
A. I. Vasil'ev. The minimization property for spaces that are normed over semifields. Matematičeskie zametki, Tome 5 (1969) no. 3, pp. 297-304. http://geodesic.mathdoc.fr/item/MZM_1969_5_3_a2/