Best approximations of functions of several variables by sums of functions of fewer variables
Matematičeskie zametki, Tome 5 (1969) no. 2, pp. 217-226.

Voir la notice de l'article provenant de la source Math-Net.Ru

The minimum of the mean-square deviation of approximations of functions of several independent variables by sums of functions of fewer variables in a multidimensional parallelepiped is investigated. The approximating function yielding the minimum mean-square deviation is obtained and this minimum deviation is calculated.
@article{MZM_1969_5_2_a8,
     author = {V. M. Mordashev},
     title = {Best approximations of functions of several variables by sums of functions of fewer variables},
     journal = {Matemati\v{c}eskie zametki},
     pages = {217--226},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {1969},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1969_5_2_a8/}
}
TY  - JOUR
AU  - V. M. Mordashev
TI  - Best approximations of functions of several variables by sums of functions of fewer variables
JO  - Matematičeskie zametki
PY  - 1969
SP  - 217
EP  - 226
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1969_5_2_a8/
LA  - ru
ID  - MZM_1969_5_2_a8
ER  - 
%0 Journal Article
%A V. M. Mordashev
%T Best approximations of functions of several variables by sums of functions of fewer variables
%J Matematičeskie zametki
%D 1969
%P 217-226
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1969_5_2_a8/
%G ru
%F MZM_1969_5_2_a8
V. M. Mordashev. Best approximations of functions of several variables by sums of functions of fewer variables. Matematičeskie zametki, Tome 5 (1969) no. 2, pp. 217-226. http://geodesic.mathdoc.fr/item/MZM_1969_5_2_a8/