The $p$-variation of functions
Matematičeskie zametki, Tome 5 (1969) no. 2, pp. 195-204.

Voir la notice de l'article provenant de la source Math-Net.Ru

A formula is derived for the $p$-variation of functions of the class $V_q$ ($1\leqslant q$) and it is proved that this formula ceases to hold when $1$, in contrast to the case $q=р=1$.
@article{MZM_1969_5_2_a6,
     author = {B. I. Golubov},
     title = {The $p$-variation of functions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {195--204},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {1969},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1969_5_2_a6/}
}
TY  - JOUR
AU  - B. I. Golubov
TI  - The $p$-variation of functions
JO  - Matematičeskie zametki
PY  - 1969
SP  - 195
EP  - 204
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1969_5_2_a6/
LA  - ru
ID  - MZM_1969_5_2_a6
ER  - 
%0 Journal Article
%A B. I. Golubov
%T The $p$-variation of functions
%J Matematičeskie zametki
%D 1969
%P 195-204
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1969_5_2_a6/
%G ru
%F MZM_1969_5_2_a6
B. I. Golubov. The $p$-variation of functions. Matematičeskie zametki, Tome 5 (1969) no. 2, pp. 195-204. http://geodesic.mathdoc.fr/item/MZM_1969_5_2_a6/