When are all modules semichain modules?
Matematičeskie zametki, Tome 5 (1969) no. 2, pp. 173-182
Cet article a éte moissonné depuis la source Math-Net.Ru
A module is called a chain module if the structure of its submodules forms a chain. It is proven that all left $R$-modules can be decomposed into a direct sum of chain modules if and only if the ring $R$ is generalized uniserial.
@article{MZM_1969_5_2_a4,
author = {L. A. Skornyakov},
title = {When are all modules semichain modules?},
journal = {Matemati\v{c}eskie zametki},
pages = {173--182},
year = {1969},
volume = {5},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1969_5_2_a4/}
}
L. A. Skornyakov. When are all modules semichain modules?. Matematičeskie zametki, Tome 5 (1969) no. 2, pp. 173-182. http://geodesic.mathdoc.fr/item/MZM_1969_5_2_a4/