Completely simple topological commutative rings
Matematičeskie zametki, Tome 5 (1969) no. 2, pp. 161-171.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper considers a generalization to topological algebras of the concept of algebraical simplicity (see, definitions 1 and 1$'$ below). Such topological algebras are called completely simple. Completely simple topological commutative rings and Abelian groups are described. As an appendix, a new proof is obtained for Kowalsky's theorem on fields with topologies that cannot be weakened.
@article{MZM_1969_5_2_a3,
     author = {A. F. Mutylin},
     title = {Completely simple topological commutative rings},
     journal = {Matemati\v{c}eskie zametki},
     pages = {161--171},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {1969},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1969_5_2_a3/}
}
TY  - JOUR
AU  - A. F. Mutylin
TI  - Completely simple topological commutative rings
JO  - Matematičeskie zametki
PY  - 1969
SP  - 161
EP  - 171
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1969_5_2_a3/
LA  - ru
ID  - MZM_1969_5_2_a3
ER  - 
%0 Journal Article
%A A. F. Mutylin
%T Completely simple topological commutative rings
%J Matematičeskie zametki
%D 1969
%P 161-171
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1969_5_2_a3/
%G ru
%F MZM_1969_5_2_a3
A. F. Mutylin. Completely simple topological commutative rings. Matematičeskie zametki, Tome 5 (1969) no. 2, pp. 161-171. http://geodesic.mathdoc.fr/item/MZM_1969_5_2_a3/