Completely simple topological commutative rings
Matematičeskie zametki, Tome 5 (1969) no. 2, pp. 161-171
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper considers a generalization to topological algebras of the concept of algebraical simplicity (see, definitions 1 and 1$'$ below). Such topological algebras are called completely simple. Completely simple topological commutative rings and Abelian groups are described. As an appendix, a new proof is obtained for Kowalsky's theorem on fields with topologies that cannot be weakened.
@article{MZM_1969_5_2_a3,
author = {A. F. Mutylin},
title = {Completely simple topological commutative rings},
journal = {Matemati\v{c}eskie zametki},
pages = {161--171},
publisher = {mathdoc},
volume = {5},
number = {2},
year = {1969},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1969_5_2_a3/}
}
A. F. Mutylin. Completely simple topological commutative rings. Matematičeskie zametki, Tome 5 (1969) no. 2, pp. 161-171. http://geodesic.mathdoc.fr/item/MZM_1969_5_2_a3/