Unirationality of certain surfaces
Matematičeskie zametki, Tome 5 (1969) no. 2, pp. 155-159
Voir la notice de l'article provenant de la source Math-Net.Ru
Nonsingular cubic surfaces in $P^3$ and nonsingular intersections of two quadrics in $P^4$ are investigated. It is proved that if a $k$-point exists on a surface, there is a $k$-point not on a line; $k$ is the field over which the surfaces are defined.
@article{MZM_1969_5_2_a2,
author = {A. M. Shermenev},
title = {Unirationality of certain surfaces},
journal = {Matemati\v{c}eskie zametki},
pages = {155--159},
publisher = {mathdoc},
volume = {5},
number = {2},
year = {1969},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1969_5_2_a2/}
}
A. M. Shermenev. Unirationality of certain surfaces. Matematičeskie zametki, Tome 5 (1969) no. 2, pp. 155-159. http://geodesic.mathdoc.fr/item/MZM_1969_5_2_a2/