Unirationality of certain surfaces
Matematičeskie zametki, Tome 5 (1969) no. 2, pp. 155-159.

Voir la notice de l'article provenant de la source Math-Net.Ru

Nonsingular cubic surfaces in $P^3$ and nonsingular intersections of two quadrics in $P^4$ are investigated. It is proved that if a $k$-point exists on a surface, there is a $k$-point not on a line; $k$ is the field over which the surfaces are defined.
@article{MZM_1969_5_2_a2,
     author = {A. M. Shermenev},
     title = {Unirationality of certain surfaces},
     journal = {Matemati\v{c}eskie zametki},
     pages = {155--159},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {1969},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1969_5_2_a2/}
}
TY  - JOUR
AU  - A. M. Shermenev
TI  - Unirationality of certain surfaces
JO  - Matematičeskie zametki
PY  - 1969
SP  - 155
EP  - 159
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1969_5_2_a2/
LA  - ru
ID  - MZM_1969_5_2_a2
ER  - 
%0 Journal Article
%A A. M. Shermenev
%T Unirationality of certain surfaces
%J Matematičeskie zametki
%D 1969
%P 155-159
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1969_5_2_a2/
%G ru
%F MZM_1969_5_2_a2
A. M. Shermenev. Unirationality of certain surfaces. Matematičeskie zametki, Tome 5 (1969) no. 2, pp. 155-159. http://geodesic.mathdoc.fr/item/MZM_1969_5_2_a2/