The asymptotic behavior of the spectral function for elliptic operators in an~unbounded region
Matematičeskie zametki, Tome 5 (1969) no. 2, pp. 245-251
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider elliptic self-adjoint differential operators $L$ of order $2m$ in a bounded region $D\subset R_n$. An asymptotic formula for the function $N(\lambda)=\sum\limits_{\lambda_n\lambda}1$ the number of eigenvalues of the operator $L$ less than $\lambda$ is proved:
$$
N(\lambda)=M_0\lambda{n/2m}+o(\lambda^{n/2m})
$$
where $\lambda\to+\infty$ and $M_0$ is the following constant:
$$
M_0=\frac{V_D}{(2\pi)^n\Gamma(1+n/2m)}\int_{R_n}e^{-L(s)}\,ds.
$$
@article{MZM_1969_5_2_a11,
author = {G. I. Bass},
title = {The asymptotic behavior of the spectral function for elliptic operators in an~unbounded region},
journal = {Matemati\v{c}eskie zametki},
pages = {245--251},
publisher = {mathdoc},
volume = {5},
number = {2},
year = {1969},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1969_5_2_a11/}
}
G. I. Bass. The asymptotic behavior of the spectral function for elliptic operators in an~unbounded region. Matematičeskie zametki, Tome 5 (1969) no. 2, pp. 245-251. http://geodesic.mathdoc.fr/item/MZM_1969_5_2_a11/