$K_1$-theory and the congruence problem
Matematičeskie zametki, Tome 5 (1969) no. 2, pp. 233-244.

Voir la notice de l'article provenant de la source Math-Net.Ru

The following results are presented: a) A $K_1$-functor of a noncommutative ring with unity is a factor of a general linear group with respect to the subgroup of elementary matrices; b) a description is given of all the subgroups of finite index in a special linear group over the order in a field.
@article{MZM_1969_5_2_a10,
     author = {L. N. Vaserstein},
     title = {$K_1$-theory and the congruence problem},
     journal = {Matemati\v{c}eskie zametki},
     pages = {233--244},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {1969},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1969_5_2_a10/}
}
TY  - JOUR
AU  - L. N. Vaserstein
TI  - $K_1$-theory and the congruence problem
JO  - Matematičeskie zametki
PY  - 1969
SP  - 233
EP  - 244
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1969_5_2_a10/
LA  - ru
ID  - MZM_1969_5_2_a10
ER  - 
%0 Journal Article
%A L. N. Vaserstein
%T $K_1$-theory and the congruence problem
%J Matematičeskie zametki
%D 1969
%P 233-244
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1969_5_2_a10/
%G ru
%F MZM_1969_5_2_a10
L. N. Vaserstein. $K_1$-theory and the congruence problem. Matematičeskie zametki, Tome 5 (1969) no. 2, pp. 233-244. http://geodesic.mathdoc.fr/item/MZM_1969_5_2_a10/