$K_1$-theory and the congruence problem
Matematičeskie zametki, Tome 5 (1969) no. 2, pp. 233-244
Voir la notice de l'article provenant de la source Math-Net.Ru
The following results are presented: a) A $K_1$-functor of a noncommutative ring with unity is a factor of a general linear group with respect to the subgroup of elementary matrices; b) a description is given of all the subgroups of finite index in a special linear group over the order in a field.
@article{MZM_1969_5_2_a10,
author = {L. N. Vaserstein},
title = {$K_1$-theory and the congruence problem},
journal = {Matemati\v{c}eskie zametki},
pages = {233--244},
publisher = {mathdoc},
volume = {5},
number = {2},
year = {1969},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1969_5_2_a10/}
}
L. N. Vaserstein. $K_1$-theory and the congruence problem. Matematičeskie zametki, Tome 5 (1969) no. 2, pp. 233-244. http://geodesic.mathdoc.fr/item/MZM_1969_5_2_a10/