Regular elements in the Cremonian group
Matematičeskie zametki, Tome 5 (1969) no. 2, pp. 145-148.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present article we have proved that some positive power of an arbitrary automorphism of a birational ruled surface acts either on a relatively minimal model or on a rational surface whose Picard group has rank equal to 10 (see [3]).
@article{MZM_1969_5_2_a0,
     author = {Yu. I. Manin},
     title = {Regular elements in the {Cremonian} group},
     journal = {Matemati\v{c}eskie zametki},
     pages = {145--148},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {1969},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1969_5_2_a0/}
}
TY  - JOUR
AU  - Yu. I. Manin
TI  - Regular elements in the Cremonian group
JO  - Matematičeskie zametki
PY  - 1969
SP  - 145
EP  - 148
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1969_5_2_a0/
LA  - ru
ID  - MZM_1969_5_2_a0
ER  - 
%0 Journal Article
%A Yu. I. Manin
%T Regular elements in the Cremonian group
%J Matematičeskie zametki
%D 1969
%P 145-148
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1969_5_2_a0/
%G ru
%F MZM_1969_5_2_a0
Yu. I. Manin. Regular elements in the Cremonian group. Matematičeskie zametki, Tome 5 (1969) no. 2, pp. 145-148. http://geodesic.mathdoc.fr/item/MZM_1969_5_2_a0/