Distal criterion of transitive transformation groups
Matematičeskie zametki, Tome 5 (1969) no. 1, pp. 77-80
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $G$ be a topological group, $H$ a closed subgroup of the group $G$, and $G/H$ a homogeneous space of cosets $Hg(g\in G)$. The group $G$ acts naturally on $G/H$, defining a transitive transformation group $(G/H,G,\pi)$, $(Ha,g)\pi=Hag$ ($a\in G$, $g\in G$). Necessary and sufficient conditions for the distalness of the transformation group $(G/H,G,\pi)$ are indicated.
@article{MZM_1969_5_1_a9,
author = {I. U. Bronshtein},
title = {Distal criterion of transitive transformation groups},
journal = {Matemati\v{c}eskie zametki},
pages = {77--80},
publisher = {mathdoc},
volume = {5},
number = {1},
year = {1969},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1969_5_1_a9/}
}
I. U. Bronshtein. Distal criterion of transitive transformation groups. Matematičeskie zametki, Tome 5 (1969) no. 1, pp. 77-80. http://geodesic.mathdoc.fr/item/MZM_1969_5_1_a9/