On groups acting in phase space
Matematičeskie zametki, Tome 5 (1969) no. 1, pp. 55-61.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of the motion of a material point in a central field of general type is considered. It is shown that in the infinite-dimensional group of canonical transformations which leave the Hamiltonian function invariant there are no finite-dimensional subgroups which are significantly larger than the three-dimensional group of rotations (exact formulations in Sec. 3 and Sec. 5).
@article{MZM_1969_5_1_a6,
     author = {\`E. \`E. Shnol'},
     title = {On groups acting in phase space},
     journal = {Matemati\v{c}eskie zametki},
     pages = {55--61},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {1969},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1969_5_1_a6/}
}
TY  - JOUR
AU  - È. È. Shnol'
TI  - On groups acting in phase space
JO  - Matematičeskie zametki
PY  - 1969
SP  - 55
EP  - 61
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1969_5_1_a6/
LA  - ru
ID  - MZM_1969_5_1_a6
ER  - 
%0 Journal Article
%A È. È. Shnol'
%T On groups acting in phase space
%J Matematičeskie zametki
%D 1969
%P 55-61
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1969_5_1_a6/
%G ru
%F MZM_1969_5_1_a6
È. È. Shnol'. On groups acting in phase space. Matematičeskie zametki, Tome 5 (1969) no. 1, pp. 55-61. http://geodesic.mathdoc.fr/item/MZM_1969_5_1_a6/