The deviation of polygonal functions in the $L_p$ metric
Matematičeskie zametki, Tome 5 (1969) no. 1, pp. 31-37.

Voir la notice de l'article provenant de la source Math-Net.Ru

The precise value is given of the upper bound of the deviation in the $L_p$ metric $(1\le p\infty)$ of a function $f(x)$ in the class $H_\omega$, given by a convex modulus of continuity $\omega(t)$, from its polygonal approximation at the points $x_k=k/n$ ($k=0,1,\dots,n$).
@article{MZM_1969_5_1_a3,
     author = {V. F. Storchai},
     title = {The deviation of polygonal functions in the $L_p$ metric},
     journal = {Matemati\v{c}eskie zametki},
     pages = {31--37},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {1969},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1969_5_1_a3/}
}
TY  - JOUR
AU  - V. F. Storchai
TI  - The deviation of polygonal functions in the $L_p$ metric
JO  - Matematičeskie zametki
PY  - 1969
SP  - 31
EP  - 37
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1969_5_1_a3/
LA  - ru
ID  - MZM_1969_5_1_a3
ER  - 
%0 Journal Article
%A V. F. Storchai
%T The deviation of polygonal functions in the $L_p$ metric
%J Matematičeskie zametki
%D 1969
%P 31-37
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1969_5_1_a3/
%G ru
%F MZM_1969_5_1_a3
V. F. Storchai. The deviation of polygonal functions in the $L_p$ metric. Matematičeskie zametki, Tome 5 (1969) no. 1, pp. 31-37. http://geodesic.mathdoc.fr/item/MZM_1969_5_1_a3/