The deviation of polygonal functions in the $L_p$ metric
Matematičeskie zametki, Tome 5 (1969) no. 1, pp. 31-37
Voir la notice de l'article provenant de la source Math-Net.Ru
The precise value is given of the upper bound of the deviation in the $L_p$ metric $(1\le p\infty)$ of a function $f(x)$ in the class $H_\omega$, given by a convex modulus of continuity $\omega(t)$, from its polygonal approximation at the points $x_k=k/n$ ($k=0,1,\dots,n$).
@article{MZM_1969_5_1_a3,
author = {V. F. Storchai},
title = {The deviation of polygonal functions in the $L_p$ metric},
journal = {Matemati\v{c}eskie zametki},
pages = {31--37},
publisher = {mathdoc},
volume = {5},
number = {1},
year = {1969},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1969_5_1_a3/}
}
V. F. Storchai. The deviation of polygonal functions in the $L_p$ metric. Matematičeskie zametki, Tome 5 (1969) no. 1, pp. 31-37. http://geodesic.mathdoc.fr/item/MZM_1969_5_1_a3/