Finite groups all $n$-th maximal subgroups of which are generalized schmidt groups
Matematičeskie zametki, Tome 5 (1969) no. 1, pp. 129-136.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article contains a complete description of finite groups, every maximal solvable subgroup $H$ of which possesses the following property: all $(n-1)$-th maximal subgroups of $H$ are generalized Schmidt groups. It is shown that $n=1$.
@article{MZM_1969_5_1_a15,
     author = {Ya. G. Berkovich},
     title = {Finite groups all $n$-th maximal subgroups of which are generalized schmidt groups},
     journal = {Matemati\v{c}eskie zametki},
     pages = {129--136},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {1969},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1969_5_1_a15/}
}
TY  - JOUR
AU  - Ya. G. Berkovich
TI  - Finite groups all $n$-th maximal subgroups of which are generalized schmidt groups
JO  - Matematičeskie zametki
PY  - 1969
SP  - 129
EP  - 136
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1969_5_1_a15/
LA  - ru
ID  - MZM_1969_5_1_a15
ER  - 
%0 Journal Article
%A Ya. G. Berkovich
%T Finite groups all $n$-th maximal subgroups of which are generalized schmidt groups
%J Matematičeskie zametki
%D 1969
%P 129-136
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1969_5_1_a15/
%G ru
%F MZM_1969_5_1_a15
Ya. G. Berkovich. Finite groups all $n$-th maximal subgroups of which are generalized schmidt groups. Matematičeskie zametki, Tome 5 (1969) no. 1, pp. 129-136. http://geodesic.mathdoc.fr/item/MZM_1969_5_1_a15/