Minkowski's conjecture on a~system of linear inhomogeneous forms
Matematičeskie zametki, Tome 5 (1969) no. 1, pp. 107-116.

Voir la notice de l'article provenant de la source Math-Net.Ru

The possibility of representing third-order unimodular matrices as a product of diagonal, orthogonal, triangular, and integral matrices is investigated.
@article{MZM_1969_5_1_a13,
     author = {Kh. N. Narzullaev},
     title = {Minkowski's conjecture on a~system of linear inhomogeneous forms},
     journal = {Matemati\v{c}eskie zametki},
     pages = {107--116},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {1969},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1969_5_1_a13/}
}
TY  - JOUR
AU  - Kh. N. Narzullaev
TI  - Minkowski's conjecture on a~system of linear inhomogeneous forms
JO  - Matematičeskie zametki
PY  - 1969
SP  - 107
EP  - 116
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1969_5_1_a13/
LA  - ru
ID  - MZM_1969_5_1_a13
ER  - 
%0 Journal Article
%A Kh. N. Narzullaev
%T Minkowski's conjecture on a~system of linear inhomogeneous forms
%J Matematičeskie zametki
%D 1969
%P 107-116
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1969_5_1_a13/
%G ru
%F MZM_1969_5_1_a13
Kh. N. Narzullaev. Minkowski's conjecture on a~system of linear inhomogeneous forms. Matematičeskie zametki, Tome 5 (1969) no. 1, pp. 107-116. http://geodesic.mathdoc.fr/item/MZM_1969_5_1_a13/