On the Whitney--Mahowald theorem concerning the normal numbers of smooth embeddings
Matematičeskie zametki, Tome 5 (1969) no. 1, pp. 91-97
Voir la notice de l'article provenant de la source Math-Net.Ru
It is shown that for a smooth, closed, nonorientable manifold of even dimensionality greater than two, every integer satisfying the Whitney–Mahowald condition is realized as the normal number of some embedding of that manifold in Euclidean space of twice the dimensionality; several corollaries are deduced from this result.
@article{MZM_1969_5_1_a11,
author = {B. D. Malyi},
title = {On the {Whitney--Mahowald} theorem concerning the normal numbers of smooth embeddings},
journal = {Matemati\v{c}eskie zametki},
pages = {91--97},
publisher = {mathdoc},
volume = {5},
number = {1},
year = {1969},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1969_5_1_a11/}
}
B. D. Malyi. On the Whitney--Mahowald theorem concerning the normal numbers of smooth embeddings. Matematičeskie zametki, Tome 5 (1969) no. 1, pp. 91-97. http://geodesic.mathdoc.fr/item/MZM_1969_5_1_a11/