The summation of orthogonal series by linear methods
Matematičeskie zametki, Tome 4 (1968) no. 6, pp. 697-705
Voir la notice de l'article provenant de la source Math-Net.Ru
A class of linear methods is distinguished which possesses the property: each method sums almost everywhere any orthogonal series in $L_2$ if and only if a subsequence of partial sums whose indices satisfy a certain condition and do not depend on the series converges almost everywhere. Questions are considered on the exact Weyl multiplier and strong summability.
@article{MZM_1968_4_6_a9,
author = {V. A. Bolgov},
title = {The summation of orthogonal series by linear methods},
journal = {Matemati\v{c}eskie zametki},
pages = {697--705},
publisher = {mathdoc},
volume = {4},
number = {6},
year = {1968},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1968_4_6_a9/}
}
V. A. Bolgov. The summation of orthogonal series by linear methods. Matematičeskie zametki, Tome 4 (1968) no. 6, pp. 697-705. http://geodesic.mathdoc.fr/item/MZM_1968_4_6_a9/