Embeddingof a~finite $CW$-complex in a~sphere
Matematičeskie zametki, Tome 4 (1968) no. 6, pp. 669-676.

Voir la notice de l'article provenant de la source Math-Net.Ru

The following theorem is proven: for any finite $CW$-complex X of dimensionality n, no one can provide the Euclidean sphere of dimensionality $(n+1)(n+2)/2$ with a $CW$-complex structure such that $X$ will turn out to be isomorphic to some subcomplex of this $CW$-complex.
@article{MZM_1968_4_6_a6,
     author = {Ya. N. Shapiro},
     title = {Embeddingof a~finite $CW$-complex in a~sphere},
     journal = {Matemati\v{c}eskie zametki},
     pages = {669--676},
     publisher = {mathdoc},
     volume = {4},
     number = {6},
     year = {1968},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1968_4_6_a6/}
}
TY  - JOUR
AU  - Ya. N. Shapiro
TI  - Embeddingof a~finite $CW$-complex in a~sphere
JO  - Matematičeskie zametki
PY  - 1968
SP  - 669
EP  - 676
VL  - 4
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1968_4_6_a6/
LA  - ru
ID  - MZM_1968_4_6_a6
ER  - 
%0 Journal Article
%A Ya. N. Shapiro
%T Embeddingof a~finite $CW$-complex in a~sphere
%J Matematičeskie zametki
%D 1968
%P 669-676
%V 4
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1968_4_6_a6/
%G ru
%F MZM_1968_4_6_a6
Ya. N. Shapiro. Embeddingof a~finite $CW$-complex in a~sphere. Matematičeskie zametki, Tome 4 (1968) no. 6, pp. 669-676. http://geodesic.mathdoc.fr/item/MZM_1968_4_6_a6/