Embeddingof a finite $CW$-complex in a sphere
Matematičeskie zametki, Tome 4 (1968) no. 6, pp. 669-676
Cet article a éte moissonné depuis la source Math-Net.Ru
The following theorem is proven: for any finite $CW$-complex X of dimensionality n, no one can provide the Euclidean sphere of dimensionality $(n+1)(n+2)/2$ with a $CW$-complex structure such that $X$ will turn out to be isomorphic to some subcomplex of this $CW$-complex.
@article{MZM_1968_4_6_a6,
author = {Ya. N. Shapiro},
title = {Embeddingof a~finite $CW$-complex in a~sphere},
journal = {Matemati\v{c}eskie zametki},
pages = {669--676},
year = {1968},
volume = {4},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1968_4_6_a6/}
}
Ya. N. Shapiro. Embeddingof a finite $CW$-complex in a sphere. Matematičeskie zametki, Tome 4 (1968) no. 6, pp. 669-676. http://geodesic.mathdoc.fr/item/MZM_1968_4_6_a6/