The theory of radicals in lattice-ordered rings
Matematičeskie zametki, Tome 4 (1968) no. 6, pp. 639-648.

Voir la notice de l'article provenant de la source Math-Net.Ru

Special classes of associative lattice-ordered rings are introduced which are analogous to V. A. Andrunakievich's special classes of rings. The appropriate special radicals for them are defined. It is shown that the special classes of $l$-rings are: 1) the class of all $l$-primary $l$-rings; 2) the class of all $l$-primary $l$-rings without locally nilpotent $l$-ideals (it is shown that the corresponding $l$-ideal is a union of nil-$l$-ideals of the ring); 3) the class of $l$-rings not containing strictly positive divisors of zero; 4) the class of subdirectly indecomposable $l$-rings with $l$-idempotent core.
@article{MZM_1968_4_6_a3,
     author = {M. A. Shatalova},
     title = {The theory of radicals in lattice-ordered rings},
     journal = {Matemati\v{c}eskie zametki},
     pages = {639--648},
     publisher = {mathdoc},
     volume = {4},
     number = {6},
     year = {1968},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1968_4_6_a3/}
}
TY  - JOUR
AU  - M. A. Shatalova
TI  - The theory of radicals in lattice-ordered rings
JO  - Matematičeskie zametki
PY  - 1968
SP  - 639
EP  - 648
VL  - 4
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1968_4_6_a3/
LA  - ru
ID  - MZM_1968_4_6_a3
ER  - 
%0 Journal Article
%A M. A. Shatalova
%T The theory of radicals in lattice-ordered rings
%J Matematičeskie zametki
%D 1968
%P 639-648
%V 4
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1968_4_6_a3/
%G ru
%F MZM_1968_4_6_a3
M. A. Shatalova. The theory of radicals in lattice-ordered rings. Matematičeskie zametki, Tome 4 (1968) no. 6, pp. 639-648. http://geodesic.mathdoc.fr/item/MZM_1968_4_6_a3/