Density of an~individual solution and ergodicity of a~family of solutions to the equation $d\eta/d\xi=P(\xi,\,\eta)/Q(\xi,\,\eta)$
Matematičeskie zametki, Tome 4 (1968) no. 6, pp. 741-750.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper provides a sharpened proof of M. G. Khudai–Verenov's theorem on the density in $C^2$ of solutions to the equation $d\eta/d\xi=F/Q$ on condition that this equation has two singular points at infinity whose characteristic numbers satisfy certain constraints of the incommensurability type.
@article{MZM_1968_4_6_a14,
     author = {Yu. S. Ilyashenko},
     title = {Density of an~individual solution and ergodicity of a~family of solutions to the equation $d\eta/d\xi=P(\xi,\,\eta)/Q(\xi,\,\eta)$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {741--750},
     publisher = {mathdoc},
     volume = {4},
     number = {6},
     year = {1968},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1968_4_6_a14/}
}
TY  - JOUR
AU  - Yu. S. Ilyashenko
TI  - Density of an~individual solution and ergodicity of a~family of solutions to the equation $d\eta/d\xi=P(\xi,\,\eta)/Q(\xi,\,\eta)$
JO  - Matematičeskie zametki
PY  - 1968
SP  - 741
EP  - 750
VL  - 4
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1968_4_6_a14/
LA  - ru
ID  - MZM_1968_4_6_a14
ER  - 
%0 Journal Article
%A Yu. S. Ilyashenko
%T Density of an~individual solution and ergodicity of a~family of solutions to the equation $d\eta/d\xi=P(\xi,\,\eta)/Q(\xi,\,\eta)$
%J Matematičeskie zametki
%D 1968
%P 741-750
%V 4
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1968_4_6_a14/
%G ru
%F MZM_1968_4_6_a14
Yu. S. Ilyashenko. Density of an~individual solution and ergodicity of a~family of solutions to the equation $d\eta/d\xi=P(\xi,\,\eta)/Q(\xi,\,\eta)$. Matematičeskie zametki, Tome 4 (1968) no. 6, pp. 741-750. http://geodesic.mathdoc.fr/item/MZM_1968_4_6_a14/