Application of an~arbitrarily rapidly convergent method to the reducibility problem for linear systems with odd almost-periodic coefficients
Matematičeskie zametki, Tome 4 (1968) no. 6, pp. 729-740
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a method of successive substitution generalizing the known Kolmogorov–Arnol'd method so as to be applicable in a proof of the reducibility of linear systems with odd almost-periodic coefficients. We prove that our method can be made to converge arbitrarily rapidly. The method is used to solve a problem that cannot be solved by the Kolmogorov–Arnol'd method because of the relatively slow convergence of the latter.mplex.
@article{MZM_1968_4_6_a13,
author = {I. N. Blinov},
title = {Application of an~arbitrarily rapidly convergent method to the reducibility problem for linear systems with odd almost-periodic coefficients},
journal = {Matemati\v{c}eskie zametki},
pages = {729--740},
publisher = {mathdoc},
volume = {4},
number = {6},
year = {1968},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1968_4_6_a13/}
}
TY - JOUR AU - I. N. Blinov TI - Application of an~arbitrarily rapidly convergent method to the reducibility problem for linear systems with odd almost-periodic coefficients JO - Matematičeskie zametki PY - 1968 SP - 729 EP - 740 VL - 4 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1968_4_6_a13/ LA - ru ID - MZM_1968_4_6_a13 ER -
%0 Journal Article %A I. N. Blinov %T Application of an~arbitrarily rapidly convergent method to the reducibility problem for linear systems with odd almost-periodic coefficients %J Matematičeskie zametki %D 1968 %P 729-740 %V 4 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_1968_4_6_a13/ %G ru %F MZM_1968_4_6_a13
I. N. Blinov. Application of an~arbitrarily rapidly convergent method to the reducibility problem for linear systems with odd almost-periodic coefficients. Matematičeskie zametki, Tome 4 (1968) no. 6, pp. 729-740. http://geodesic.mathdoc.fr/item/MZM_1968_4_6_a13/