Application of an~arbitrarily rapidly convergent method to the reducibility problem for linear systems with odd almost-periodic coefficients
Matematičeskie zametki, Tome 4 (1968) no. 6, pp. 729-740.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a method of successive substitution generalizing the known Kolmogorov–Arnol'd method so as to be applicable in a proof of the reducibility of linear systems with odd almost-periodic coefficients. We prove that our method can be made to converge arbitrarily rapidly. The method is used to solve a problem that cannot be solved by the Kolmogorov–Arnol'd method because of the relatively slow convergence of the latter.mplex.
@article{MZM_1968_4_6_a13,
     author = {I. N. Blinov},
     title = {Application of an~arbitrarily rapidly convergent method to the reducibility problem for linear systems with odd almost-periodic coefficients},
     journal = {Matemati\v{c}eskie zametki},
     pages = {729--740},
     publisher = {mathdoc},
     volume = {4},
     number = {6},
     year = {1968},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1968_4_6_a13/}
}
TY  - JOUR
AU  - I. N. Blinov
TI  - Application of an~arbitrarily rapidly convergent method to the reducibility problem for linear systems with odd almost-periodic coefficients
JO  - Matematičeskie zametki
PY  - 1968
SP  - 729
EP  - 740
VL  - 4
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1968_4_6_a13/
LA  - ru
ID  - MZM_1968_4_6_a13
ER  - 
%0 Journal Article
%A I. N. Blinov
%T Application of an~arbitrarily rapidly convergent method to the reducibility problem for linear systems with odd almost-periodic coefficients
%J Matematičeskie zametki
%D 1968
%P 729-740
%V 4
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1968_4_6_a13/
%G ru
%F MZM_1968_4_6_a13
I. N. Blinov. Application of an~arbitrarily rapidly convergent method to the reducibility problem for linear systems with odd almost-periodic coefficients. Matematičeskie zametki, Tome 4 (1968) no. 6, pp. 729-740. http://geodesic.mathdoc.fr/item/MZM_1968_4_6_a13/