On the mutual growth of neighboring coefficients of univalent functions
Matematičeskie zametki, Tome 4 (1968) no. 6, pp. 715-722.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the class $S$ of functions $f(z)=z+c_2z^2+c_3z^3+\dotsb$, regular and univalent in $|z|1$, the following bound is obtained: $||c_{n+1}|-|c_n||4.26$, $n=1,2,\dots$
@article{MZM_1968_4_6_a11,
     author = {L. P. Il'ina},
     title = {On the mutual growth of neighboring coefficients of univalent functions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {715--722},
     publisher = {mathdoc},
     volume = {4},
     number = {6},
     year = {1968},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1968_4_6_a11/}
}
TY  - JOUR
AU  - L. P. Il'ina
TI  - On the mutual growth of neighboring coefficients of univalent functions
JO  - Matematičeskie zametki
PY  - 1968
SP  - 715
EP  - 722
VL  - 4
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1968_4_6_a11/
LA  - ru
ID  - MZM_1968_4_6_a11
ER  - 
%0 Journal Article
%A L. P. Il'ina
%T On the mutual growth of neighboring coefficients of univalent functions
%J Matematičeskie zametki
%D 1968
%P 715-722
%V 4
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1968_4_6_a11/
%G ru
%F MZM_1968_4_6_a11
L. P. Il'ina. On the mutual growth of neighboring coefficients of univalent functions. Matematičeskie zametki, Tome 4 (1968) no. 6, pp. 715-722. http://geodesic.mathdoc.fr/item/MZM_1968_4_6_a11/