On the mutual growth of neighboring coefficients of univalent functions
Matematičeskie zametki, Tome 4 (1968) no. 6, pp. 715-722
Voir la notice de l'article provenant de la source Math-Net.Ru
In the class $S$ of functions $f(z)=z+c_2z^2+c_3z^3+\dotsb$, regular and univalent in $|z|1$, the following bound is obtained: $||c_{n+1}|-|c_n||4.26$, $n=1,2,\dots$
@article{MZM_1968_4_6_a11,
author = {L. P. Il'ina},
title = {On the mutual growth of neighboring coefficients of univalent functions},
journal = {Matemati\v{c}eskie zametki},
pages = {715--722},
publisher = {mathdoc},
volume = {4},
number = {6},
year = {1968},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1968_4_6_a11/}
}
L. P. Il'ina. On the mutual growth of neighboring coefficients of univalent functions. Matematičeskie zametki, Tome 4 (1968) no. 6, pp. 715-722. http://geodesic.mathdoc.fr/item/MZM_1968_4_6_a11/