On the uniqueness of a~Haar series that converges with respect to subsequences of partial sums
Matematičeskie zametki, Tome 4 (1968) no. 6, pp. 707-714.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the existence of two different series in the Haar system for which the subsequences of partial sums converge to the same $D$-integrable function everywhere on $[0,1]$.
@article{MZM_1968_4_6_a10,
     author = {V. A. Skvortsov},
     title = {On the uniqueness of {a~Haar} series that converges with respect to subsequences of partial sums},
     journal = {Matemati\v{c}eskie zametki},
     pages = {707--714},
     publisher = {mathdoc},
     volume = {4},
     number = {6},
     year = {1968},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1968_4_6_a10/}
}
TY  - JOUR
AU  - V. A. Skvortsov
TI  - On the uniqueness of a~Haar series that converges with respect to subsequences of partial sums
JO  - Matematičeskie zametki
PY  - 1968
SP  - 707
EP  - 714
VL  - 4
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1968_4_6_a10/
LA  - ru
ID  - MZM_1968_4_6_a10
ER  - 
%0 Journal Article
%A V. A. Skvortsov
%T On the uniqueness of a~Haar series that converges with respect to subsequences of partial sums
%J Matematičeskie zametki
%D 1968
%P 707-714
%V 4
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1968_4_6_a10/
%G ru
%F MZM_1968_4_6_a10
V. A. Skvortsov. On the uniqueness of a~Haar series that converges with respect to subsequences of partial sums. Matematičeskie zametki, Tome 4 (1968) no. 6, pp. 707-714. http://geodesic.mathdoc.fr/item/MZM_1968_4_6_a10/