On varieties of $n$-solvable groups
Matematičeskie zametki, Tome 4 (1968) no. 6, pp. 629-634.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new and shorter proof is given for the fundamental theorem of Kaluzhnin's recent note [1]: A variety of $n$-Abelian groups is the sum of a variety of Abelian groups and the respective Burnside varieties of groups of exponent $n$ and $1-n$. This theorem is extended to varieties of $n$-solvable groups.
@article{MZM_1968_4_6_a1,
     author = {V. M. Kotlov},
     title = {On varieties of $n$-solvable groups},
     journal = {Matemati\v{c}eskie zametki},
     pages = {629--634},
     publisher = {mathdoc},
     volume = {4},
     number = {6},
     year = {1968},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1968_4_6_a1/}
}
TY  - JOUR
AU  - V. M. Kotlov
TI  - On varieties of $n$-solvable groups
JO  - Matematičeskie zametki
PY  - 1968
SP  - 629
EP  - 634
VL  - 4
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1968_4_6_a1/
LA  - ru
ID  - MZM_1968_4_6_a1
ER  - 
%0 Journal Article
%A V. M. Kotlov
%T On varieties of $n$-solvable groups
%J Matematičeskie zametki
%D 1968
%P 629-634
%V 4
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1968_4_6_a1/
%G ru
%F MZM_1968_4_6_a1
V. M. Kotlov. On varieties of $n$-solvable groups. Matematičeskie zametki, Tome 4 (1968) no. 6, pp. 629-634. http://geodesic.mathdoc.fr/item/MZM_1968_4_6_a1/