On the inevitable error of the method of nets
Matematičeskie zametki, Tome 4 (1968) no. 6, pp. 621-627
Cet article a éte moissonné depuis la source Math-Net.Ru
It is proved that no matter what the solution of an arbitrary boundary-value problem for the two-dimensional Laplace equation, unless it is a special fourth-degree harmonic polynomial, the rate of convergence of the method of square nets using the operator for computation of the four-point arithmetic mean can never be better than $h^2$ (where $h$ is the spacing of the net).
@article{MZM_1968_4_6_a0,
author = {E. A. Volkov},
title = {On the inevitable error of the method of nets},
journal = {Matemati\v{c}eskie zametki},
pages = {621--627},
year = {1968},
volume = {4},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1968_4_6_a0/}
}
E. A. Volkov. On the inevitable error of the method of nets. Matematičeskie zametki, Tome 4 (1968) no. 6, pp. 621-627. http://geodesic.mathdoc.fr/item/MZM_1968_4_6_a0/