On the completeness of a~system of functions on a~segment
Matematičeskie zametki, Tome 4 (1968) no. 5, pp. 557-568.

Voir la notice de l'article provenant de la source Math-Net.Ru

The question is considered of the completeness of the systems of functions $\{x^{\lambda_n}[1+\varepsilon_n]\}$, where $\varepsilon_n(x)$ are small, in the spaces $C$ and $L_p$ on the segment $[0,a]$.
@article{MZM_1968_4_5_a8,
     author = {L. A. Leont'eva},
     title = {On the completeness of a~system of functions on a~segment},
     journal = {Matemati\v{c}eskie zametki},
     pages = {557--568},
     publisher = {mathdoc},
     volume = {4},
     number = {5},
     year = {1968},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1968_4_5_a8/}
}
TY  - JOUR
AU  - L. A. Leont'eva
TI  - On the completeness of a~system of functions on a~segment
JO  - Matematičeskie zametki
PY  - 1968
SP  - 557
EP  - 568
VL  - 4
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1968_4_5_a8/
LA  - ru
ID  - MZM_1968_4_5_a8
ER  - 
%0 Journal Article
%A L. A. Leont'eva
%T On the completeness of a~system of functions on a~segment
%J Matematičeskie zametki
%D 1968
%P 557-568
%V 4
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1968_4_5_a8/
%G ru
%F MZM_1968_4_5_a8
L. A. Leont'eva. On the completeness of a~system of functions on a~segment. Matematičeskie zametki, Tome 4 (1968) no. 5, pp. 557-568. http://geodesic.mathdoc.fr/item/MZM_1968_4_5_a8/