Summation of arbitrary series by Riesz methods
Matematičeskie zametki, Tome 4 (1968) no. 5, pp. 541-550.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is known (theorem of Agnew and Darevskii) that for each divergent real sequence $\{s_n\}$ and each real number $c$, there exists a $T$-method of summing $\{s_n\}$ to $c$. In this note it is shown that for each divergent sequence which is bounded above or below we can take the $T$-method in the above theorem to be a Riesz method. We also study Riesz summability of unbounded (above and below) sequences.
@article{MZM_1968_4_5_a6,
     author = {L. V. Grepachevskaya},
     title = {Summation of arbitrary series by {Riesz} methods},
     journal = {Matemati\v{c}eskie zametki},
     pages = {541--550},
     publisher = {mathdoc},
     volume = {4},
     number = {5},
     year = {1968},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1968_4_5_a6/}
}
TY  - JOUR
AU  - L. V. Grepachevskaya
TI  - Summation of arbitrary series by Riesz methods
JO  - Matematičeskie zametki
PY  - 1968
SP  - 541
EP  - 550
VL  - 4
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1968_4_5_a6/
LA  - ru
ID  - MZM_1968_4_5_a6
ER  - 
%0 Journal Article
%A L. V. Grepachevskaya
%T Summation of arbitrary series by Riesz methods
%J Matematičeskie zametki
%D 1968
%P 541-550
%V 4
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1968_4_5_a6/
%G ru
%F MZM_1968_4_5_a6
L. V. Grepachevskaya. Summation of arbitrary series by Riesz methods. Matematičeskie zametki, Tome 4 (1968) no. 5, pp. 541-550. http://geodesic.mathdoc.fr/item/MZM_1968_4_5_a6/