The representation of integral functions by series of the form $\sum_{n=1}^\infty\,\alpha_n f(\lambda_n z)$
Matematičeskie zametki, Tome 4 (1968) no. 5, pp. 579-588
Cet article a éte moissonné depuis la source Math-Net.Ru
The necessary and sufficient conditions that an integral function, whose order satisfies certain conditions, should be represented by a series of integral functions of the form $f(\lambda_nz)$ are indicated.
@article{MZM_1968_4_5_a10,
author = {V. I. Shevtsov},
title = {The representation of integral functions by series of the form $\sum_{n=1}^\infty\,\alpha_n f(\lambda_n z)$},
journal = {Matemati\v{c}eskie zametki},
pages = {579--588},
year = {1968},
volume = {4},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1968_4_5_a10/}
}
TY - JOUR
AU - V. I. Shevtsov
TI - The representation of integral functions by series of the form $\sum_{n=1}^\infty\,\alpha_n f(\lambda_n z)$
JO - Matematičeskie zametki
PY - 1968
SP - 579
EP - 588
VL - 4
IS - 5
UR - http://geodesic.mathdoc.fr/item/MZM_1968_4_5_a10/
LA - ru
ID - MZM_1968_4_5_a10
ER -
V. I. Shevtsov. The representation of integral functions by series of the form $\sum_{n=1}^\infty\,\alpha_n f(\lambda_n z)$. Matematičeskie zametki, Tome 4 (1968) no. 5, pp. 579-588. http://geodesic.mathdoc.fr/item/MZM_1968_4_5_a10/