The representation of integral functions by series of the form $\sum_{n=1}^\infty\,\alpha_n f(\lambda_n z)$
Matematičeskie zametki, Tome 4 (1968) no. 5, pp. 579-588.

Voir la notice de l'article provenant de la source Math-Net.Ru

The necessary and sufficient conditions that an integral function, whose order satisfies certain conditions, should be represented by a series of integral functions of the form $f(\lambda_nz)$ are indicated.
@article{MZM_1968_4_5_a10,
     author = {V. I. Shevtsov},
     title = {The representation of integral functions by series of the form $\sum_{n=1}^\infty\,\alpha_n f(\lambda_n z)$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {579--588},
     publisher = {mathdoc},
     volume = {4},
     number = {5},
     year = {1968},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1968_4_5_a10/}
}
TY  - JOUR
AU  - V. I. Shevtsov
TI  - The representation of integral functions by series of the form $\sum_{n=1}^\infty\,\alpha_n f(\lambda_n z)$
JO  - Matematičeskie zametki
PY  - 1968
SP  - 579
EP  - 588
VL  - 4
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1968_4_5_a10/
LA  - ru
ID  - MZM_1968_4_5_a10
ER  - 
%0 Journal Article
%A V. I. Shevtsov
%T The representation of integral functions by series of the form $\sum_{n=1}^\infty\,\alpha_n f(\lambda_n z)$
%J Matematičeskie zametki
%D 1968
%P 579-588
%V 4
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1968_4_5_a10/
%G ru
%F MZM_1968_4_5_a10
V. I. Shevtsov. The representation of integral functions by series of the form $\sum_{n=1}^\infty\,\alpha_n f(\lambda_n z)$. Matematičeskie zametki, Tome 4 (1968) no. 5, pp. 579-588. http://geodesic.mathdoc.fr/item/MZM_1968_4_5_a10/