The integrability of conjugate functions
Matematičeskie zametki, Tome 4 (1968) no. 4, pp. 461-465.

Voir la notice de l'article provenant de la source Math-Net.Ru

For any function $f$ of $L(0,2\pi)$, we prove that there is a function $\varphi\in L(0,2\pi)$ such that $|\varphi(x)|=|f(x)|$ almost everywhere and $\tilde{\varphi}\in L(0,2\pi)$, where $\tilde{\varphi}$ is the conjugate of $\varphi$.
@article{MZM_1968_4_4_a9,
     author = {O. D. Tsereteli},
     title = {The integrability of conjugate functions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {461--465},
     publisher = {mathdoc},
     volume = {4},
     number = {4},
     year = {1968},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1968_4_4_a9/}
}
TY  - JOUR
AU  - O. D. Tsereteli
TI  - The integrability of conjugate functions
JO  - Matematičeskie zametki
PY  - 1968
SP  - 461
EP  - 465
VL  - 4
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1968_4_4_a9/
LA  - ru
ID  - MZM_1968_4_4_a9
ER  - 
%0 Journal Article
%A O. D. Tsereteli
%T The integrability of conjugate functions
%J Matematičeskie zametki
%D 1968
%P 461-465
%V 4
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1968_4_4_a9/
%G ru
%F MZM_1968_4_4_a9
O. D. Tsereteli. The integrability of conjugate functions. Matematičeskie zametki, Tome 4 (1968) no. 4, pp. 461-465. http://geodesic.mathdoc.fr/item/MZM_1968_4_4_a9/