On zeta functions of fields of algebraic numbers
Matematičeskie zametki, Tome 4 (1968) no. 3, pp. 333-339.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we prove an “explicit formula” relating the scalar product of the Hecke series of two fields of algebraic numbers to the zeta-function composites of these fields.
@article{MZM_1968_4_3_a8,
     author = {B. Z. Moroz},
     title = {On zeta functions of fields of algebraic numbers},
     journal = {Matemati\v{c}eskie zametki},
     pages = {333--339},
     publisher = {mathdoc},
     volume = {4},
     number = {3},
     year = {1968},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1968_4_3_a8/}
}
TY  - JOUR
AU  - B. Z. Moroz
TI  - On zeta functions of fields of algebraic numbers
JO  - Matematičeskie zametki
PY  - 1968
SP  - 333
EP  - 339
VL  - 4
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1968_4_3_a8/
LA  - ru
ID  - MZM_1968_4_3_a8
ER  - 
%0 Journal Article
%A B. Z. Moroz
%T On zeta functions of fields of algebraic numbers
%J Matematičeskie zametki
%D 1968
%P 333-339
%V 4
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1968_4_3_a8/
%G ru
%F MZM_1968_4_3_a8
B. Z. Moroz. On zeta functions of fields of algebraic numbers. Matematičeskie zametki, Tome 4 (1968) no. 3, pp. 333-339. http://geodesic.mathdoc.fr/item/MZM_1968_4_3_a8/