Nonsymmetrical distance between probability distributions, entropy and the theorem of Pythagoras
Matematičeskie zametki, Tome 4 (1968) no. 3, pp. 323-332.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Kullback–Leibler information $I[Q\mid P]$ for discrimination in favor of the probability distribution $Q$ against $P$ is considered as a nonsymmetrical analog of one half of the square of the distance between the “points” $Q$ and $P$. For the $n$-dimensional “planes” we take the exponential families. We shall prove a nonsymmetrical analogue of the theorem of Pythagoras in the formulation: “The squared length of an oblique line equals the sum of the squared lengths of the perpendicular and the projection of the oblique line,” and also an analog of the cosine theorem and the like.
@article{MZM_1968_4_3_a7,
     author = {N. N. Chentsov},
     title = {Nonsymmetrical distance between probability distributions, entropy and the theorem of {Pythagoras}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {323--332},
     publisher = {mathdoc},
     volume = {4},
     number = {3},
     year = {1968},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1968_4_3_a7/}
}
TY  - JOUR
AU  - N. N. Chentsov
TI  - Nonsymmetrical distance between probability distributions, entropy and the theorem of Pythagoras
JO  - Matematičeskie zametki
PY  - 1968
SP  - 323
EP  - 332
VL  - 4
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1968_4_3_a7/
LA  - ru
ID  - MZM_1968_4_3_a7
ER  - 
%0 Journal Article
%A N. N. Chentsov
%T Nonsymmetrical distance between probability distributions, entropy and the theorem of Pythagoras
%J Matematičeskie zametki
%D 1968
%P 323-332
%V 4
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1968_4_3_a7/
%G ru
%F MZM_1968_4_3_a7
N. N. Chentsov. Nonsymmetrical distance between probability distributions, entropy and the theorem of Pythagoras. Matematičeskie zametki, Tome 4 (1968) no. 3, pp. 323-332. http://geodesic.mathdoc.fr/item/MZM_1968_4_3_a7/