On a property of $N$-functions
Matematičeskie zametki, Tome 4 (1968) no. 3, pp. 281-290.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider three classes of $N$-functions: $(\Delta')$, the class of functions satisfuing the $\Delta'$ condition, $(\Delta_2)$, the class of functions satisfuing the $\Delta_2$ condition, and $(M_\Delta)$, the class of functions $M(u)$ satisfying the condition: $\lim\limits_{u\to\infty}\ln M(u)/\ln u =p\infty$. We establish the connection between the class of powers and the class of $N$-functions $M(u)$ which belong to the class $(\Delta')$ together with their complementary functions and we also establish the connections between the classes $(\Delta')$, $(M_\Delta)$ and $(\Delta_2)$.
@article{MZM_1968_4_3_a3,
     author = {D. V. Salekhov},
     title = {On a property of $N$-functions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {281--290},
     publisher = {mathdoc},
     volume = {4},
     number = {3},
     year = {1968},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1968_4_3_a3/}
}
TY  - JOUR
AU  - D. V. Salekhov
TI  - On a property of $N$-functions
JO  - Matematičeskie zametki
PY  - 1968
SP  - 281
EP  - 290
VL  - 4
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1968_4_3_a3/
LA  - ru
ID  - MZM_1968_4_3_a3
ER  - 
%0 Journal Article
%A D. V. Salekhov
%T On a property of $N$-functions
%J Matematičeskie zametki
%D 1968
%P 281-290
%V 4
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1968_4_3_a3/
%G ru
%F MZM_1968_4_3_a3
D. V. Salekhov. On a property of $N$-functions. Matematičeskie zametki, Tome 4 (1968) no. 3, pp. 281-290. http://geodesic.mathdoc.fr/item/MZM_1968_4_3_a3/