On minimal universal trees
Matematičeskie zametki, Tome 4 (1968) no. 3, pp. 371-380.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we solve the problem of finding a minimal $n$-universal rooted tree. We show that the number $\alpha(n)$ of vertices of a minimal $n$-universal rooted tree coincides with the quantity of trees of a special form (uniform trees), the number of whose vertices $\leqslant n$. We derive a recursion formula for computing the value of $\alpha(n)$. We also specify the construction of a minimal universal tree for an arbitrary set of uniform trees.
@article{MZM_1968_4_3_a13,
     author = {M. K. Gol'dberg and \'E. M. Livshits},
     title = {On minimal universal trees},
     journal = {Matemati\v{c}eskie zametki},
     pages = {371--380},
     publisher = {mathdoc},
     volume = {4},
     number = {3},
     year = {1968},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1968_4_3_a13/}
}
TY  - JOUR
AU  - M. K. Gol'dberg
AU  - É. M. Livshits
TI  - On minimal universal trees
JO  - Matematičeskie zametki
PY  - 1968
SP  - 371
EP  - 380
VL  - 4
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1968_4_3_a13/
LA  - ru
ID  - MZM_1968_4_3_a13
ER  - 
%0 Journal Article
%A M. K. Gol'dberg
%A É. M. Livshits
%T On minimal universal trees
%J Matematičeskie zametki
%D 1968
%P 371-380
%V 4
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1968_4_3_a13/
%G ru
%F MZM_1968_4_3_a13
M. K. Gol'dberg; É. M. Livshits. On minimal universal trees. Matematičeskie zametki, Tome 4 (1968) no. 3, pp. 371-380. http://geodesic.mathdoc.fr/item/MZM_1968_4_3_a13/