On minimal universal trees
Matematičeskie zametki, Tome 4 (1968) no. 3, pp. 371-380
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we solve the problem of finding a minimal $n$-universal rooted tree. We show that the number $\alpha(n)$ of vertices of a minimal $n$-universal rooted tree coincides with the quantity of trees of a special form (uniform trees), the number of whose vertices $\leqslant n$. We derive a recursion formula for computing the value of $\alpha(n)$. We also specify the construction of a minimal universal tree for an arbitrary set of uniform trees.
@article{MZM_1968_4_3_a13,
author = {M. K. Gol'dberg and \'E. M. Livshits},
title = {On minimal universal trees},
journal = {Matemati\v{c}eskie zametki},
pages = {371--380},
publisher = {mathdoc},
volume = {4},
number = {3},
year = {1968},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1968_4_3_a13/}
}
M. K. Gol'dberg; É. M. Livshits. On minimal universal trees. Matematičeskie zametki, Tome 4 (1968) no. 3, pp. 371-380. http://geodesic.mathdoc.fr/item/MZM_1968_4_3_a13/