On the first boundary problem for a~hyperbolic equation in an arbitrary cylinder
Matematičeskie zametki, Tome 4 (1968) no. 2, pp. 181-189.

Voir la notice de l'article provenant de la source Math-Net.Ru

A study is made of the solutions of a second-order hyperbolic equation which vanish on the boundary of an arbitrary domain in the space of the variables $x_1,\dots,x_n$ The degree of smoothness in the initial conditions, necessary and sufficient to guarantee the same degree of smoothness in the solution (considered as a function of $x_1,\dots,x_n$ for all $t$, is ascertained.
@article{MZM_1968_4_2_a9,
     author = {A. F. Filippov},
     title = {On the first boundary problem for a~hyperbolic equation in an arbitrary cylinder},
     journal = {Matemati\v{c}eskie zametki},
     pages = {181--189},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {1968},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1968_4_2_a9/}
}
TY  - JOUR
AU  - A. F. Filippov
TI  - On the first boundary problem for a~hyperbolic equation in an arbitrary cylinder
JO  - Matematičeskie zametki
PY  - 1968
SP  - 181
EP  - 189
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1968_4_2_a9/
LA  - ru
ID  - MZM_1968_4_2_a9
ER  - 
%0 Journal Article
%A A. F. Filippov
%T On the first boundary problem for a~hyperbolic equation in an arbitrary cylinder
%J Matematičeskie zametki
%D 1968
%P 181-189
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1968_4_2_a9/
%G ru
%F MZM_1968_4_2_a9
A. F. Filippov. On the first boundary problem for a~hyperbolic equation in an arbitrary cylinder. Matematičeskie zametki, Tome 4 (1968) no. 2, pp. 181-189. http://geodesic.mathdoc.fr/item/MZM_1968_4_2_a9/