Some asymptotic spectral properties of singular operators
Matematičeskie zametki, Tome 4 (1968) no. 2, pp. 169-172.

Voir la notice de l'article provenant de la source Math-Net.Ru

A class of uniformly elliptic, positive operators in $R^n$ with discrete spectrum is considered for which the coefficients of the derivatives of even order and the free term increase at the same rate, while the other coefficients play a subordinate role. The first term of the asymptotic expansion of the spectral function and $N(\lambda)$ is found for such operators; here $N(\lambda)=\sum_{\lambda_n\leqslant\lambda}1$, where the $\lambda_n$ are the eigenvalues of the operator.
@article{MZM_1968_4_2_a7,
     author = {Yu. N. Sudarev},
     title = {Some asymptotic spectral properties of singular operators},
     journal = {Matemati\v{c}eskie zametki},
     pages = {169--172},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {1968},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1968_4_2_a7/}
}
TY  - JOUR
AU  - Yu. N. Sudarev
TI  - Some asymptotic spectral properties of singular operators
JO  - Matematičeskie zametki
PY  - 1968
SP  - 169
EP  - 172
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1968_4_2_a7/
LA  - ru
ID  - MZM_1968_4_2_a7
ER  - 
%0 Journal Article
%A Yu. N. Sudarev
%T Some asymptotic spectral properties of singular operators
%J Matematičeskie zametki
%D 1968
%P 169-172
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1968_4_2_a7/
%G ru
%F MZM_1968_4_2_a7
Yu. N. Sudarev. Some asymptotic spectral properties of singular operators. Matematičeskie zametki, Tome 4 (1968) no. 2, pp. 169-172. http://geodesic.mathdoc.fr/item/MZM_1968_4_2_a7/