Some asymptotic spectral properties of singular operators
Matematičeskie zametki, Tome 4 (1968) no. 2, pp. 169-172
Cet article a éte moissonné depuis la source Math-Net.Ru
A class of uniformly elliptic, positive operators in $R^n$ with discrete spectrum is considered for which the coefficients of the derivatives of even order and the free term increase at the same rate, while the other coefficients play a subordinate role. The first term of the asymptotic expansion of the spectral function and $N(\lambda)$ is found for such operators; here $N(\lambda)=\sum_{\lambda_n\leqslant\lambda}1$, where the $\lambda_n$ are the eigenvalues of the operator.
@article{MZM_1968_4_2_a7,
author = {Yu. N. Sudarev},
title = {Some asymptotic spectral properties of singular operators},
journal = {Matemati\v{c}eskie zametki},
pages = {169--172},
year = {1968},
volume = {4},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1968_4_2_a7/}
}
Yu. N. Sudarev. Some asymptotic spectral properties of singular operators. Matematičeskie zametki, Tome 4 (1968) no. 2, pp. 169-172. http://geodesic.mathdoc.fr/item/MZM_1968_4_2_a7/