An~invariant of multiply connected manifolds
Matematičeskie zametki, Tome 4 (1968) no. 2, pp. 155-163.

Voir la notice de l'article provenant de la source Math-Net.Ru

The conditions under which a multiply connected open manifold has the homotopic type of a finite complex are studied. Examples are analyzed.
@article{MZM_1968_4_2_a5,
     author = {V. L. Golo},
     title = {An~invariant of multiply connected manifolds},
     journal = {Matemati\v{c}eskie zametki},
     pages = {155--163},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {1968},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1968_4_2_a5/}
}
TY  - JOUR
AU  - V. L. Golo
TI  - An~invariant of multiply connected manifolds
JO  - Matematičeskie zametki
PY  - 1968
SP  - 155
EP  - 163
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1968_4_2_a5/
LA  - ru
ID  - MZM_1968_4_2_a5
ER  - 
%0 Journal Article
%A V. L. Golo
%T An~invariant of multiply connected manifolds
%J Matematičeskie zametki
%D 1968
%P 155-163
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1968_4_2_a5/
%G ru
%F MZM_1968_4_2_a5
V. L. Golo. An~invariant of multiply connected manifolds. Matematičeskie zametki, Tome 4 (1968) no. 2, pp. 155-163. http://geodesic.mathdoc.fr/item/MZM_1968_4_2_a5/