Hochschild cohomologies for $Z$-rings with a~power basis
Matematičeskie zametki, Tome 4 (1968) no. 2, pp. 141-150.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Lambda$ be an associative ring with unity. The main result of the article consists in the proof of the periodicity of the Hochschild cohomologies of $\Lambda$ in the case when $\Lambda$ is a $Z$-ring with a power basis. The period is equal to 2. This result is proved for maximal orders of fields of algebraic numbers.
@article{MZM_1968_4_2_a3,
     author = {F. R. Bobovich and D. K. Faddeev},
     title = {Hochschild cohomologies for $Z$-rings with a~power basis},
     journal = {Matemati\v{c}eskie zametki},
     pages = {141--150},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {1968},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1968_4_2_a3/}
}
TY  - JOUR
AU  - F. R. Bobovich
AU  - D. K. Faddeev
TI  - Hochschild cohomologies for $Z$-rings with a~power basis
JO  - Matematičeskie zametki
PY  - 1968
SP  - 141
EP  - 150
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1968_4_2_a3/
LA  - ru
ID  - MZM_1968_4_2_a3
ER  - 
%0 Journal Article
%A F. R. Bobovich
%A D. K. Faddeev
%T Hochschild cohomologies for $Z$-rings with a~power basis
%J Matematičeskie zametki
%D 1968
%P 141-150
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1968_4_2_a3/
%G ru
%F MZM_1968_4_2_a3
F. R. Bobovich; D. K. Faddeev. Hochschild cohomologies for $Z$-rings with a~power basis. Matematičeskie zametki, Tome 4 (1968) no. 2, pp. 141-150. http://geodesic.mathdoc.fr/item/MZM_1968_4_2_a3/