Hochschild cohomologies for $Z$-rings with a power basis
Matematičeskie zametki, Tome 4 (1968) no. 2, pp. 141-150
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $\Lambda$ be an associative ring with unity. The main result of the article consists in the proof of the periodicity of the Hochschild cohomologies of $\Lambda$ in the case when $\Lambda$ is a $Z$-ring with a power basis. The period is equal to 2. This result is proved for maximal orders of fields of algebraic numbers.
@article{MZM_1968_4_2_a3,
author = {F. R. Bobovich and D. K. Faddeev},
title = {Hochschild cohomologies for $Z$-rings with a~power basis},
journal = {Matemati\v{c}eskie zametki},
pages = {141--150},
year = {1968},
volume = {4},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1968_4_2_a3/}
}
F. R. Bobovich; D. K. Faddeev. Hochschild cohomologies for $Z$-rings with a power basis. Matematičeskie zametki, Tome 4 (1968) no. 2, pp. 141-150. http://geodesic.mathdoc.fr/item/MZM_1968_4_2_a3/