Exact constants in inequalities between norms of derivatives of functions
Matematičeskie zametki, Tome 4 (1968) no. 2, pp. 221-232.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article we shall concern ourselves with determining exact (least possible) constants in the inequalities of the form $\|f^{(k)}\|_{L_q}\le K\|f\|_{L_p}^{\frac{l-k-r^{-1}+q^{-1}}{l-r^{-1}+p^{-1}}}\|f^{(l)}\|_{L_r}^{\frac{k-q^{-1}+p^{-1}}{l-r^{-1}+p^{-1}}}$ for functions defined on the entire $(-\infty,\infty)$, absolutely continuous on any interval together with their $(l-1)$-th derivatives, and having finite $$ l=2,\quad k=0,\quad k=1,\quad q=r=\infty,\quad 1\leqslant p\infty $$ is considered.
@article{MZM_1968_4_2_a13,
     author = {V. N. Gabushin},
     title = {Exact constants in inequalities between norms of derivatives of functions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {221--232},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {1968},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1968_4_2_a13/}
}
TY  - JOUR
AU  - V. N. Gabushin
TI  - Exact constants in inequalities between norms of derivatives of functions
JO  - Matematičeskie zametki
PY  - 1968
SP  - 221
EP  - 232
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1968_4_2_a13/
LA  - ru
ID  - MZM_1968_4_2_a13
ER  - 
%0 Journal Article
%A V. N. Gabushin
%T Exact constants in inequalities between norms of derivatives of functions
%J Matematičeskie zametki
%D 1968
%P 221-232
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1968_4_2_a13/
%G ru
%F MZM_1968_4_2_a13
V. N. Gabushin. Exact constants in inequalities between norms of derivatives of functions. Matematičeskie zametki, Tome 4 (1968) no. 2, pp. 221-232. http://geodesic.mathdoc.fr/item/MZM_1968_4_2_a13/