Modular forms and Hilbert functions for the field $Q(\sqrt 2)$
Matematičeskie zametki, Tome 4 (1968) no. 2, pp. 129-136
Voir la notice de l'article provenant de la source Math-Net.Ru
A new proof is given of Hammond's result on the algebraic structure of the graduated ring of integral modular forms of even weight relative to the Hilbert modular group $\Gamma$ for the field $Q(\sqrt2)$. The algebraic structure is also found of the field of all modular Hilbert functions relative to $\Gamma$.
@article{MZM_1968_4_2_a1,
author = {O. M. Fomenko},
title = {Modular forms and {Hilbert} functions for the field $Q(\sqrt 2)$},
journal = {Matemati\v{c}eskie zametki},
pages = {129--136},
publisher = {mathdoc},
volume = {4},
number = {2},
year = {1968},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1968_4_2_a1/}
}
O. M. Fomenko. Modular forms and Hilbert functions for the field $Q(\sqrt 2)$. Matematičeskie zametki, Tome 4 (1968) no. 2, pp. 129-136. http://geodesic.mathdoc.fr/item/MZM_1968_4_2_a1/