Modular forms and Hilbert functions for the field $Q(\sqrt 2)$
Matematičeskie zametki, Tome 4 (1968) no. 2, pp. 129-136.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new proof is given of Hammond's result on the algebraic structure of the graduated ring of integral modular forms of even weight relative to the Hilbert modular group $\Gamma$ for the field $Q(\sqrt2)$. The algebraic structure is also found of the field of all modular Hilbert functions relative to $\Gamma$.
@article{MZM_1968_4_2_a1,
     author = {O. M. Fomenko},
     title = {Modular forms and {Hilbert} functions for the field $Q(\sqrt 2)$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {129--136},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {1968},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1968_4_2_a1/}
}
TY  - JOUR
AU  - O. M. Fomenko
TI  - Modular forms and Hilbert functions for the field $Q(\sqrt 2)$
JO  - Matematičeskie zametki
PY  - 1968
SP  - 129
EP  - 136
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1968_4_2_a1/
LA  - ru
ID  - MZM_1968_4_2_a1
ER  - 
%0 Journal Article
%A O. M. Fomenko
%T Modular forms and Hilbert functions for the field $Q(\sqrt 2)$
%J Matematičeskie zametki
%D 1968
%P 129-136
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1968_4_2_a1/
%G ru
%F MZM_1968_4_2_a1
O. M. Fomenko. Modular forms and Hilbert functions for the field $Q(\sqrt 2)$. Matematičeskie zametki, Tome 4 (1968) no. 2, pp. 129-136. http://geodesic.mathdoc.fr/item/MZM_1968_4_2_a1/