Neutral polyverbal operations
Matematičeskie zametki, Tome 4 (1968) no. 1, pp. 85-89.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that any neutral polyverbal subgroup $W$ is generated as a subgroup by the set of its fully neutral polywords, and a necessary and sufficient condition is given for an associative neutral polyverbal operation to be verbal. The associativity of verbal operations follows easily from these results and O. N. Golovin's theorem.
@article{MZM_1968_4_1_a9,
     author = {O. N. Matsedonskaya},
     title = {Neutral polyverbal operations},
     journal = {Matemati\v{c}eskie zametki},
     pages = {85--89},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {1968},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1968_4_1_a9/}
}
TY  - JOUR
AU  - O. N. Matsedonskaya
TI  - Neutral polyverbal operations
JO  - Matematičeskie zametki
PY  - 1968
SP  - 85
EP  - 89
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1968_4_1_a9/
LA  - ru
ID  - MZM_1968_4_1_a9
ER  - 
%0 Journal Article
%A O. N. Matsedonskaya
%T Neutral polyverbal operations
%J Matematičeskie zametki
%D 1968
%P 85-89
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1968_4_1_a9/
%G ru
%F MZM_1968_4_1_a9
O. N. Matsedonskaya. Neutral polyverbal operations. Matematičeskie zametki, Tome 4 (1968) no. 1, pp. 85-89. http://geodesic.mathdoc.fr/item/MZM_1968_4_1_a9/