Distribution of values of certain classes of additive arithmetic functions in algebraic number fields
Matematičeskie zametki, Tome 4 (1968) no. 1, pp. 63-73
Cet article a éte moissonné depuis la source Math-Net.Ru
An investigation is made of the generalization of a theorem of B. V. Levin and A. S. Fainleib for homothetically extending regions in a certain $n$-dimensional real space connected with a given field $K$ of algebraic numbers of degree $n\ge2$; the paper also investigates applications of the theorem to the problem of the distribution of real additive functions which are given on a set of ideal numbers and which belong to a wider class than the class $H$ of I. P. Kubilyus.
@article{MZM_1968_4_1_a7,
author = {R. S. Baibulatov},
title = {Distribution of values of certain classes of additive arithmetic functions in algebraic number fields},
journal = {Matemati\v{c}eskie zametki},
pages = {63--73},
year = {1968},
volume = {4},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1968_4_1_a7/}
}
R. S. Baibulatov. Distribution of values of certain classes of additive arithmetic functions in algebraic number fields. Matematičeskie zametki, Tome 4 (1968) no. 1, pp. 63-73. http://geodesic.mathdoc.fr/item/MZM_1968_4_1_a7/