Projectors in certain Banach lattices
Matematičeskie zametki, Tome 4 (1968) no. 1, pp. 41-44
Voir la notice de l'article provenant de la source Math-Net.Ru
A generalization is given of the familiar result of Philips on the nonexistence of a projector from $m$ onto $c_0$. The results obtained imply, for example, the following consequence. Ifthe Orlicz space $L_M^*\ne E_M$, there is no projector from $L_M^*$ onto $E_m$ and $E_m$ is not isomorphic to any conjugate Banach space.
@article{MZM_1968_4_1_a4,
author = {G. Ya. Lozanovskii},
title = {Projectors in certain {Banach} lattices},
journal = {Matemati\v{c}eskie zametki},
pages = {41--44},
publisher = {mathdoc},
volume = {4},
number = {1},
year = {1968},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1968_4_1_a4/}
}
G. Ya. Lozanovskii. Projectors in certain Banach lattices. Matematičeskie zametki, Tome 4 (1968) no. 1, pp. 41-44. http://geodesic.mathdoc.fr/item/MZM_1968_4_1_a4/