Projectors in certain Banach lattices
Matematičeskie zametki, Tome 4 (1968) no. 1, pp. 41-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

A generalization is given of the familiar result of Philips on the nonexistence of a projector from $m$ onto $c_0$. The results obtained imply, for example, the following consequence. Ifthe Orlicz space $L_M^*\ne E_M$, there is no projector from $L_M^*$ onto $E_m$ and $E_m$ is not isomorphic to any conjugate Banach space.
@article{MZM_1968_4_1_a4,
     author = {G. Ya. Lozanovskii},
     title = {Projectors in certain {Banach} lattices},
     journal = {Matemati\v{c}eskie zametki},
     pages = {41--44},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {1968},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1968_4_1_a4/}
}
TY  - JOUR
AU  - G. Ya. Lozanovskii
TI  - Projectors in certain Banach lattices
JO  - Matematičeskie zametki
PY  - 1968
SP  - 41
EP  - 44
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1968_4_1_a4/
LA  - ru
ID  - MZM_1968_4_1_a4
ER  - 
%0 Journal Article
%A G. Ya. Lozanovskii
%T Projectors in certain Banach lattices
%J Matematičeskie zametki
%D 1968
%P 41-44
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1968_4_1_a4/
%G ru
%F MZM_1968_4_1_a4
G. Ya. Lozanovskii. Projectors in certain Banach lattices. Matematičeskie zametki, Tome 4 (1968) no. 1, pp. 41-44. http://geodesic.mathdoc.fr/item/MZM_1968_4_1_a4/