An~existence principle for a~periodic solution of a~differential equation in Banach space
Matematičeskie zametki, Tome 4 (1968) no. 1, pp. 105-111.

Voir la notice de l'article provenant de la source Math-Net.Ru

The equation $d^2x/dt^2=Ax+f(t,x)$ is considered in a Banach space $E$, where $A$ is a fixed unbounded linear operator, and $f(t,x)$ is a nonlinear operator which is periodic in $t$ and satisfies a Lipschitz condition with respect to $x\in E$. Existence conditions have been obtained for a well defined generalized periodic solution of this equation, and also when this solution coincides with the true solution. Similar results have been obtained for the first order equation.
@article{MZM_1968_4_1_a12,
     author = {N. V. Medvedev},
     title = {An~existence principle for a~periodic solution of a~differential equation in {Banach} space},
     journal = {Matemati\v{c}eskie zametki},
     pages = {105--111},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {1968},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1968_4_1_a12/}
}
TY  - JOUR
AU  - N. V. Medvedev
TI  - An~existence principle for a~periodic solution of a~differential equation in Banach space
JO  - Matematičeskie zametki
PY  - 1968
SP  - 105
EP  - 111
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1968_4_1_a12/
LA  - ru
ID  - MZM_1968_4_1_a12
ER  - 
%0 Journal Article
%A N. V. Medvedev
%T An~existence principle for a~periodic solution of a~differential equation in Banach space
%J Matematičeskie zametki
%D 1968
%P 105-111
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1968_4_1_a12/
%G ru
%F MZM_1968_4_1_a12
N. V. Medvedev. An~existence principle for a~periodic solution of a~differential equation in Banach space. Matematičeskie zametki, Tome 4 (1968) no. 1, pp. 105-111. http://geodesic.mathdoc.fr/item/MZM_1968_4_1_a12/