On a theorem of G. Szegö
Matematičeskie zametki, Tome 3 (1968) no. 6, pp. 693-702 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown that the precise result of G. Szegö on the asymptotic behavior of the Toeplitz determinants $D_n(f)$, generated by the nonnegative summable function of $f(\lambda)$ holds if $\ln f\in L_1(-\pi,\pi)$.
@article{MZM_1968_3_6_a8,
     author = {I. A. Ibragimov},
     title = {On a~theorem of {G.~Szeg\"o}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {693--702},
     year = {1968},
     volume = {3},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1968_3_6_a8/}
}
TY  - JOUR
AU  - I. A. Ibragimov
TI  - On a theorem of G. Szegö
JO  - Matematičeskie zametki
PY  - 1968
SP  - 693
EP  - 702
VL  - 3
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/MZM_1968_3_6_a8/
LA  - ru
ID  - MZM_1968_3_6_a8
ER  - 
%0 Journal Article
%A I. A. Ibragimov
%T On a theorem of G. Szegö
%J Matematičeskie zametki
%D 1968
%P 693-702
%V 3
%N 6
%U http://geodesic.mathdoc.fr/item/MZM_1968_3_6_a8/
%G ru
%F MZM_1968_3_6_a8
I. A. Ibragimov. On a theorem of G. Szegö. Matematičeskie zametki, Tome 3 (1968) no. 6, pp. 693-702. http://geodesic.mathdoc.fr/item/MZM_1968_3_6_a8/