$L_p$-convergence for expansions in terms of the eigenfunctions of a~Sturm-Liouville problem
Matematičeskie zametki, Tome 3 (1968) no. 6, pp. 683-691
Voir la notice de l'article provenant de la source Math-Net.Ru
For the operator $Ly=-(x^{2\alpha}y')'$, $x\in[0,1]$, $y(0)=y(1)=0$ with $0\leqslant\alpha1/2$, or $|y|\infty$, $y(1)=0$ with $1/2\leqslant\alpha1$ we investigate the effect which the singularity of the Sturm–Liouville operator derived from this self-adjoint expression has on $L_p$-convergence of expansions in terms of the eigenfunctions of this operator. We will prove that the orthonormalized system of eigenfunctions forms a basis in $L_p[0,1]$ for $2/(2-\alpha)$.
@article{MZM_1968_3_6_a7,
author = {V. L. Generozov},
title = {$L_p$-convergence for expansions in terms of the eigenfunctions of {a~Sturm-Liouville} problem},
journal = {Matemati\v{c}eskie zametki},
pages = {683--691},
publisher = {mathdoc},
volume = {3},
number = {6},
year = {1968},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1968_3_6_a7/}
}
V. L. Generozov. $L_p$-convergence for expansions in terms of the eigenfunctions of a~Sturm-Liouville problem. Matematičeskie zametki, Tome 3 (1968) no. 6, pp. 683-691. http://geodesic.mathdoc.fr/item/MZM_1968_3_6_a7/