Defining relations of semigroups of all directed transformations of an ordered finite set
Matematičeskie zametki, Tome 3 (1968) no. 6, pp. 657-662
Cet article a éte moissonné depuis la source Math-Net.Ru
The semigroup $\mathfrak A$ of all transformations $X$ of a finite (partially) ordered set $\Omega$, such that $\alpha\le X\alpha$ for all $\alpha\in\Omega$, is considered. All possible generating sets of a $\Omega$ are elucidated. Only one of those sets is irreducible. A system of defining relations is found for that generating set.
@article{MZM_1968_3_6_a4,
author = {E. S. Lyapin},
title = {Defining relations of semigroups of all directed transformations of an~ordered finite set},
journal = {Matemati\v{c}eskie zametki},
pages = {657--662},
year = {1968},
volume = {3},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1968_3_6_a4/}
}
E. S. Lyapin. Defining relations of semigroups of all directed transformations of an ordered finite set. Matematičeskie zametki, Tome 3 (1968) no. 6, pp. 657-662. http://geodesic.mathdoc.fr/item/MZM_1968_3_6_a4/