Defining relations of semigroups of all directed transformations of an~ordered finite set
Matematičeskie zametki, Tome 3 (1968) no. 6, pp. 657-662.

Voir la notice de l'article provenant de la source Math-Net.Ru

The semigroup $\mathfrak A$ of all transformations $X$ of a finite (partially) ordered set $\Omega$, such that $\alpha\le X\alpha$ for all $\alpha\in\Omega$, is considered. All possible generating sets of a $\Omega$ are elucidated. Only one of those sets is irreducible. A system of defining relations is found for that generating set.
@article{MZM_1968_3_6_a4,
     author = {E. S. Lyapin},
     title = {Defining relations of semigroups of all directed transformations of an~ordered finite set},
     journal = {Matemati\v{c}eskie zametki},
     pages = {657--662},
     publisher = {mathdoc},
     volume = {3},
     number = {6},
     year = {1968},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1968_3_6_a4/}
}
TY  - JOUR
AU  - E. S. Lyapin
TI  - Defining relations of semigroups of all directed transformations of an~ordered finite set
JO  - Matematičeskie zametki
PY  - 1968
SP  - 657
EP  - 662
VL  - 3
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1968_3_6_a4/
LA  - ru
ID  - MZM_1968_3_6_a4
ER  - 
%0 Journal Article
%A E. S. Lyapin
%T Defining relations of semigroups of all directed transformations of an~ordered finite set
%J Matematičeskie zametki
%D 1968
%P 657-662
%V 3
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1968_3_6_a4/
%G ru
%F MZM_1968_3_6_a4
E. S. Lyapin. Defining relations of semigroups of all directed transformations of an~ordered finite set. Matematičeskie zametki, Tome 3 (1968) no. 6, pp. 657-662. http://geodesic.mathdoc.fr/item/MZM_1968_3_6_a4/