A~probability inequality
Matematičeskie zametki, Tome 3 (1968) no. 6, pp. 731-738.

Voir la notice de l'article provenant de la source Math-Net.Ru

The inequalities due to S. N. Bernshtein for the probability of $P(|Y_n|\ge r)$, where $|Y_n|$ is the length of the vector of the normalized sum of the independent and identically distributed vectors and $r>0$ is an arbitrary quantity are extended to the case of two and three dimensions. Some results are also given in the multidimensional case.
@article{MZM_1968_3_6_a13,
     author = {A. V. Prokhorov},
     title = {A~probability inequality},
     journal = {Matemati\v{c}eskie zametki},
     pages = {731--738},
     publisher = {mathdoc},
     volume = {3},
     number = {6},
     year = {1968},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1968_3_6_a13/}
}
TY  - JOUR
AU  - A. V. Prokhorov
TI  - A~probability inequality
JO  - Matematičeskie zametki
PY  - 1968
SP  - 731
EP  - 738
VL  - 3
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1968_3_6_a13/
LA  - ru
ID  - MZM_1968_3_6_a13
ER  - 
%0 Journal Article
%A A. V. Prokhorov
%T A~probability inequality
%J Matematičeskie zametki
%D 1968
%P 731-738
%V 3
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1968_3_6_a13/
%G ru
%F MZM_1968_3_6_a13
A. V. Prokhorov. A~probability inequality. Matematičeskie zametki, Tome 3 (1968) no. 6, pp. 731-738. http://geodesic.mathdoc.fr/item/MZM_1968_3_6_a13/