Limiting distribution for the moment of first loss of a~customer in a~single-line service system with a~limited number of positions in the queue
Matematičeskie zametki, Tome 3 (1968) no. 5, pp. 541-546.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a single-line service system with a Palm arrival rate and exponential service time, with $n-1$ places in the queue. Let $\tau_n$ be the moment of first loss of a customer. It is assumed that $\alpha_0=\int_0^\infty e^{-t}dF(t)\to0$ , where $F(t)$ is the distribution function of the time interval between successive arrivals of customers. We shall study the class of limiting distributions of the quantity $\tau_n\delta(\alpha_0)$, where $\delta(\alpha_0)$ is some normalizing factor. We shall obtain conditions for which $P\{\tau_n/M\tau_n$.
@article{MZM_1968_3_5_a6,
     author = {O. P. Vinogradov},
     title = {Limiting distribution for the moment of first loss of a~customer in a~single-line service system with a~limited number of positions in the queue},
     journal = {Matemati\v{c}eskie zametki},
     pages = {541--546},
     publisher = {mathdoc},
     volume = {3},
     number = {5},
     year = {1968},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1968_3_5_a6/}
}
TY  - JOUR
AU  - O. P. Vinogradov
TI  - Limiting distribution for the moment of first loss of a~customer in a~single-line service system with a~limited number of positions in the queue
JO  - Matematičeskie zametki
PY  - 1968
SP  - 541
EP  - 546
VL  - 3
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1968_3_5_a6/
LA  - ru
ID  - MZM_1968_3_5_a6
ER  - 
%0 Journal Article
%A O. P. Vinogradov
%T Limiting distribution for the moment of first loss of a~customer in a~single-line service system with a~limited number of positions in the queue
%J Matematičeskie zametki
%D 1968
%P 541-546
%V 3
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1968_3_5_a6/
%G ru
%F MZM_1968_3_5_a6
O. P. Vinogradov. Limiting distribution for the moment of first loss of a~customer in a~single-line service system with a~limited number of positions in the queue. Matematičeskie zametki, Tome 3 (1968) no. 5, pp. 541-546. http://geodesic.mathdoc.fr/item/MZM_1968_3_5_a6/