Limiting distribution for the moment of first loss of a customer in a single-line service system with a limited number of positions in the queue
Matematičeskie zametki, Tome 3 (1968) no. 5, pp. 541-546
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider a single-line service system with a Palm arrival rate and exponential service time, with $n-1$ places in the queue. Let $\tau_n$ be the moment of first loss of a customer. It is assumed that $\alpha_0=\int_0^\infty e^{-t}dF(t)\to0$ , where $F(t)$ is the distribution function of the time interval between successive arrivals of customers. We shall study the class of limiting distributions of the quantity $\tau_n\delta(\alpha_0)$, where $\delta(\alpha_0)$ is some normalizing factor. We shall obtain conditions for which $P\{\tau_n/M\tau_n.
@article{MZM_1968_3_5_a6,
author = {O. P. Vinogradov},
title = {Limiting distribution for the moment of first loss of a~customer in a~single-line service system with a~limited number of positions in the queue},
journal = {Matemati\v{c}eskie zametki},
pages = {541--546},
year = {1968},
volume = {3},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1968_3_5_a6/}
}
TY - JOUR AU - O. P. Vinogradov TI - Limiting distribution for the moment of first loss of a customer in a single-line service system with a limited number of positions in the queue JO - Matematičeskie zametki PY - 1968 SP - 541 EP - 546 VL - 3 IS - 5 UR - http://geodesic.mathdoc.fr/item/MZM_1968_3_5_a6/ LA - ru ID - MZM_1968_3_5_a6 ER -
%0 Journal Article %A O. P. Vinogradov %T Limiting distribution for the moment of first loss of a customer in a single-line service system with a limited number of positions in the queue %J Matematičeskie zametki %D 1968 %P 541-546 %V 3 %N 5 %U http://geodesic.mathdoc.fr/item/MZM_1968_3_5_a6/ %G ru %F MZM_1968_3_5_a6
O. P. Vinogradov. Limiting distribution for the moment of first loss of a customer in a single-line service system with a limited number of positions in the queue. Matematičeskie zametki, Tome 3 (1968) no. 5, pp. 541-546. http://geodesic.mathdoc.fr/item/MZM_1968_3_5_a6/