The existence of a~derived automorphism with a~continuous spectrum
Matematičeskie zametki, Tome 3 (1968) no. 5, pp. 539-540.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that every aperiodic automorphism of a Lebesgue space has a derived automorphism with a continuous spectrum.
@article{MZM_1968_3_5_a5,
     author = {R. M. Belinskaya},
     title = {The existence of a~derived automorphism with a~continuous spectrum},
     journal = {Matemati\v{c}eskie zametki},
     pages = {539--540},
     publisher = {mathdoc},
     volume = {3},
     number = {5},
     year = {1968},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1968_3_5_a5/}
}
TY  - JOUR
AU  - R. M. Belinskaya
TI  - The existence of a~derived automorphism with a~continuous spectrum
JO  - Matematičeskie zametki
PY  - 1968
SP  - 539
EP  - 540
VL  - 3
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1968_3_5_a5/
LA  - ru
ID  - MZM_1968_3_5_a5
ER  - 
%0 Journal Article
%A R. M. Belinskaya
%T The existence of a~derived automorphism with a~continuous spectrum
%J Matematičeskie zametki
%D 1968
%P 539-540
%V 3
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1968_3_5_a5/
%G ru
%F MZM_1968_3_5_a5
R. M. Belinskaya. The existence of a~derived automorphism with a~continuous spectrum. Matematičeskie zametki, Tome 3 (1968) no. 5, pp. 539-540. http://geodesic.mathdoc.fr/item/MZM_1968_3_5_a5/