The effect of an involution in $\widetilde K^0(ZG)$
Matematičeskie zametki, Tome 3 (1968) no. 5, pp. 523-527
Voir la notice de l'article provenant de la source Math-Net.Ru
The involution in the Grothendieck group of the group ring of a finite cyclic group of prime order $p$, induced by the transition to the contragredient module is identical to complex conjugation followed by the automorphism $x\to x^{-1}$ in the ideal class group of the cyclotomic field of order $p$.
@article{MZM_1968_3_5_a3,
author = {I. Reiner},
title = {The effect of an involution in $\widetilde K^0(ZG)$},
journal = {Matemati\v{c}eskie zametki},
pages = {523--527},
publisher = {mathdoc},
volume = {3},
number = {5},
year = {1968},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1968_3_5_a3/}
}
I. Reiner. The effect of an involution in $\widetilde K^0(ZG)$. Matematičeskie zametki, Tome 3 (1968) no. 5, pp. 523-527. http://geodesic.mathdoc.fr/item/MZM_1968_3_5_a3/