The effect of an involution in $\widetilde K^0(ZG)$
Matematičeskie zametki, Tome 3 (1968) no. 5, pp. 523-527.

Voir la notice de l'article provenant de la source Math-Net.Ru

The involution in the Grothendieck group of the group ring of a finite cyclic group of prime order $p$, induced by the transition to the contragredient module is identical to complex conjugation followed by the automorphism $x\to x^{-1}$ in the ideal class group of the cyclotomic field of order $p$.
@article{MZM_1968_3_5_a3,
     author = {I. Reiner},
     title = {The effect of an involution in $\widetilde K^0(ZG)$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {523--527},
     publisher = {mathdoc},
     volume = {3},
     number = {5},
     year = {1968},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1968_3_5_a3/}
}
TY  - JOUR
AU  - I. Reiner
TI  - The effect of an involution in $\widetilde K^0(ZG)$
JO  - Matematičeskie zametki
PY  - 1968
SP  - 523
EP  - 527
VL  - 3
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1968_3_5_a3/
LA  - ru
ID  - MZM_1968_3_5_a3
ER  - 
%0 Journal Article
%A I. Reiner
%T The effect of an involution in $\widetilde K^0(ZG)$
%J Matematičeskie zametki
%D 1968
%P 523-527
%V 3
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1968_3_5_a3/
%G ru
%F MZM_1968_3_5_a3
I. Reiner. The effect of an involution in $\widetilde K^0(ZG)$. Matematičeskie zametki, Tome 3 (1968) no. 5, pp. 523-527. http://geodesic.mathdoc.fr/item/MZM_1968_3_5_a3/